Evaluation of uncertainty in dynamic, reduced-order power system models
نویسنده
چکیده
With the advent of high-speed computation and the desire to analyze increasingly complex behavior in power systems, simulation techniques are gaining importance and prevalence. However, while simulations of large, interconnected power systems are feasible, they remain time-consuming. Additionally, the models and parameters used in simulations are uncertain, due to measurement uncertainty, the need to approximate complex behavior with low-order models and the inherent changing nature of the power system. This thesis explores the use of model reduction techniques to enable the study of uncertainty in large-scale power system models. The main goal of this thesis is to demonstrate that uncertainty analyses of transient simulations of large, interconnected power systems are possible. To achieve this, we demonstrate that a basic three stage approach to the problem yields useful results without significantly increasing the computational burden. The first stage is to reduce the order of the original power system model, which reduces simulation times and allows the system to be simulated multiple times in a reasonable time-frame. Second, the mechanics of the model reduction are closely studied; how uncertainties affect the reduction process and the parameters in the reduced-order model as well as how the process of reduction increases uncertainty are of particular interest. Third, the reduced-order model and its accompanying uncertainty description are used to study the uncertainty of the original model. Our demonstration uses a particular model reduction technique, synchronic modal equivalencing (SME), and a particular uncertainty analysis method, the probabilistic collocation method (PCM). Though our ideas are applicable more generally, a concrete demonstration of the principle is instructive and necessary. Further, while these particular techniques are not relevant to every system, they do apply to a broad class of systems and illustrate the salient features of our methodology. As mentioned above, a detailed analysis of the model reduction technique, in this case SME, is necessary. As an ancillary benefit of the thesis work, interesting theoretical results relevant to the SME algorithm, which is still under development, are derived. Thesis Supervisor: Bernard C. Lesieutre Title: Associate Professor of Electrical Engineering _C
منابع مشابه
Dynamic Planning the Expansion of Electric Energy Distribution Systems Considering Distributed Generation Resources in the Presence of Power Demand Uncertainty
In this paper, a new strategy based on a dynamic (time-based) model is proposed for expansion planning of electrical energy distribution systems, taking into account distributed generation resources and advantage of the techno-economic approach. In addition to optimal placement and capacity, the proposed model is able to determine the timing of installation / reinforcement of expansion options....
متن کاملClean and Polluting DG Types Planning in Stochastic Price Conditions and DG Unit Uncertainties
This study presents a dynamic way in a DG planning problem instead of the last static or pseudo-dynamic planning point of views. A new way in modeling the DG units’ output power and the load uncertainties based on the probability rules is proposed in this paper. A sensitivity analysis on the stochastic nature of the electricity price and global fuel price is carried out through a proposed model...
متن کاملModel-based Approach for Multi-sensor Fault Identification in Power Plant Gas Turbines
In this paper, the multi-sensor fault diagnosis in the exhaust temperature sensors of a V94.2 heavy duty gas turbine is presented. A Laguerre network-based fuzzy modeling approach is presented to predict the output temperature of the gas turbine for sensor fault diagnosis. Due to the nonlinear dynamics of the gas turbine, in these models the Laguerre filter parts are related to the linear d...
متن کاملComparative Study of Random Matrices Capability in Uncertainty Detection of Pier’s Dynamics
Because of random nature of many dependent variables in coastal engineering, treatment of effective parameters is generally associated with uncertainty. Numerical models are often used for dynamic analysis of complex structures, including mechanical systems. Furthermore, deterministic models are not sufficient for exact anticipation of structure’s dynamic response, but probabilistic models...
متن کاملFuzzy Control of Fuel Cell Distributed Generation Systems
The operation of Fuel Cell Distributed Generation (FCDG) systems in distribution systems is introduced by modeling, controller design, and simulation study of a Solid Oxide Fuel Cell (SOFC) distributed generation (DG) system. The physical model of the fuel cell stack and dynamic models of power conditioning units are described. Then, suitable control architecture based on fuzzy logic contro...
متن کامل